Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors.

نویسندگان

  • Michele De Palma
  • Mary Anna Venneri
  • Rossella Galli
  • Lucia Sergi Sergi
  • Letterio S Politi
  • Maurilio Sampaolesi
  • Luigi Naldini
چکیده

Bone marrow-derived cells contribute to tumor angiogenesis. Here, we demonstrate that monocytes expressing the Tie2 receptor (Tie2-expressing monocytes [TEMs]) (1) are a distinct hematopoietic lineage of proangiogenic cells, (2) are selectively recruited to spontaneous and orthotopic tumors, (3) promote angiogenesis in a paracrine manner, and (4) account for most of the proangiogenic activity of myeloid cells in tumors. Remarkably, TEM knockout completely prevented human glioma neovascularization in the mouse brain and induced substantial tumor regression. Besides TEMs and endothelial cells (ECs), Tie2 expression distinguished a rare population of tumor stroma-derived mesenchymal progenitors representing a primary source of tumor pericytes. Therefore, Tie2 expression characterizes three distinct cell types required for tumor neovascularization: ECs, proangiogenic cells of hematopoietic origin, and pericyte precursors of mesenchymal origin.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of proangiogenic TIE2-expressing monocytes (TEMs) in human peripheral blood and cancer.

Tumor-infiltrating myeloid cells, including tumor-associated macrophages (TAMs), have been implicated in tumor progression. We recently described a lineage of mouse monocytes characterized by expression of the Tie2 angiopoietin receptor and required for the vascularization and growth of several tumor models. Here, we report that TIE2 expression in human blood identifies a subset of monocytes di...

متن کامل

HEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY Identification of proangiogenic TIE2-expressing monocytes (TEMs) in human peripheral blood and cancer

Tumor-infiltrating myeloid cells, including tumor-associated macrophages (TAMs), have been implicated in tumor progression. We recently described a lineage of mouse monocytes characterized by expression of the Tie2 angiopoietin receptor and required for the vascularization and growth of several tumor models. Here, we report that TIE2 expression in human blood identifies a subset of monocytes di...

متن کامل

Tie2-dependent deletion of α6 integrin subunit in mice reduces tumor growth and angiogenesis.

The α6 integrin subunit (α6) has been implicated in cancer cell migration and in the progression of several malignancies, but its role in tumor angiogenesis is unclear. In mice, anti-α6 blocking antibodies reduce tumor angiogenesis, whereas Tie1-dependent α6 gene deletion enhances neovessel formation in melanoma and lung carcinoma. To clarify the discrepancy in these results we used the cre-lox...

متن کامل

Myeloid lineage progenitors give rise to vascular endothelium.

Despite an important role in vascular development and repair, the origin of endothelial progenitors remains unknown. Accumulating evidence indicates that cells derived from the hematopoietic system participate in angiogenesis. However, the identity and functional role of these cells remain controversial. Here we show that vascular endothelial cells can differentiate from common myeloid progenit...

متن کامل

A distinguishing gene signature shared by tumor-infiltrating Tie2-expressing monocytes, blood "resident" monocytes, and embryonic macrophages suggests common functions and developmental relationships.

We previously showed that Tie2-expressing monocytes (TEMs) have nonredundant proangiogenic activity in tumors. Here, we compared the gene expression profile of tumor-infiltrating TEMs with that of tumor-associated macrophages (TAMs), spleen-derived Gr1(+)Cd11b(+) neutrophils/myeloid-derived suppressor cells, circulating "inflammatory" and "resident" monocytes, and tumor-derived endothelial cell...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cancer cell

دوره 8 3  شماره 

صفحات  -

تاریخ انتشار 2005